SYMMETRIES \& CONSERVATIONS LAWS

Homework

If you have problems, do not hesitate to contact me:
Stephen Haywood (RAL)
S.Haywood@rl.ac.uk

Tel 01235446761

Lecture 1

Q 1.1) By considering the first few terms of the expansions, prove that

$$
\exp (A) \exp (B) \neq \exp (A+B)
$$

if A and B do not commute.
However, show that the equality holds if A and B do commute (prove in general, to all orders).
Q 1.2) By expanding the exponential, find an expression for $\exp (\mathrm{i} \alpha A)$ where $A=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$
Q 1.3) If $[A, B]=B$, find an expression for $\exp (i \alpha A) B \exp (-i \alpha A)$ (consider to all orders).

Lecture 2

Q 2.1) Consider which of the following are groups:

- Integers under Addition
- Integers under Subtraction
- Integers under Multiplication
- Reals under Multiplication

Any violations of the requirements for a group mean that the set and operation do not form a group.
Q 2.2) Demonstrate that there is only one group combination table for 3 distinct objects, i.e. all groups for 3 objects have the same form (are isomorphic) to Z_{3}.
Do this by considering all the combinations for 3 distinct objects $\{\mathrm{e}, \mathrm{a}, \mathrm{b}\}$.
Q 2.3) Show that the set of Lorentz Transformations:

$$
g(\beta)\left\{\begin{array}{l}
x^{\prime}=\gamma(x-\beta t) \\
t^{\prime}=\gamma(t-\beta x) \\
\gamma=1 / \sqrt{1-\beta^{2}}
\end{array} \quad|\beta|<1\right.
$$

form an Abelian Lie group under the operation "follows".
Hint: start by combining two boosts: $g\left(\beta_{2}\right) g\left(\beta_{1}\right)$ and showing that these correspond to a third boost.
Do this in Euclidean space. Easiest to employ matrix notation.
Q 2.4) Show that $U(n)$ and $S U(n)$ are groups.

Lecture 3

Q 3.1) Consider rotations in 3D about the $x-, y$ - and z-axes $-\mathrm{SO}(3)$.
Identify generators appropriate to
a) Scalar wavefunctions $\psi(x)$ - we have done this in the Lectures; you can just write down the QM operators (do not write lots of blah, just write down operators)
b) Real vectors in 3D space - consider infinitesimal rotation matrices; the generators will be 3×3 matrices (give the rotation matrices, consider small angles and identify generators)
In both cases, find the structure constants. (Don't work out every single possibility, but appeal to symmetry.)

Q 3.2) For the generators $\left\{L_{x}, L_{y}, L_{z}\right\}$ in question 3.1, part (b), find the simultaneous eigenvectors of L^{2} and L_{z} (i.e. the one set of vectors which are eigenvectors of both operators).

Q 3.3) Find the adjoint matrices for the generators in question 3.1, part (b). In this case, it is obvious that they satisfy the Lie algebra.

Q 3.4) Verify the form of $R_{y}(\theta)$ for spin-1 given in Lecture 3.

Lecture 4

Q 4.1) Using the Young Tableaux rules, write down the multiplicity for p particles of $S U(n)$ in a totally symmetric state, namely a row of p boxes:

p
Now consider examples of how the corresponding states could be labelled by supplying quantum numbers $\{1,2, \ldots, n\}$.

| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Etc
By considering all the possible configurations, verify the multiplicity. Do this in general, not for a specific example.
Hint: This is so trivial, that it requires no algebra, but you have to spot the trick!
The trick is to consider the number of ways of listing p boxes with ($n-1$) transitions of state label.
Q 4.2) Using the Young Tableaux rules, verify that the multiplicity of a general multiplet in $\mathrm{SU}(2)$ is $(a+1)$ and in $S U(3)$ is $1 / 2(a+1)(b+1)(a+b+2)$.

Lecture 5

Q 5.1) Considering only flavour, find the ratio of matrix elements for $\pi^{0} \rightarrow \gamma \gamma$ and $\eta \rightarrow \gamma \gamma$.
Do this for a general case of mixing angle θ_{p}, and then choose θ_{p} such that the η has no strangequark content.
Is the -ve sign in the π^{0} wavefunction meaningful?
How to proceed:
Label the scattering operator S and the meson state $\mid \mathrm{M}>$.
What you need is $\langle\gamma \gamma| S|M\rangle=\sum_{q}\langle\gamma \gamma| S|q \bar{q}\rangle<q \bar{q} \mid M>$

