# **SYMMETRIES & CONSERVATIONS LAWS**

#### Homework

If you have problems, do not hesitate to contact me:

Stephen Haywood (RAL) <u>S.Haywood@rl.ac.uk</u> Tel 01235 446761

Q 1.1) By considering the first few terms of the expansions, prove that  $exp(A) exp(B) \neq exp(A + B)$ 

if A and B do not commute.

However, show that the equality holds if A and B do commute (prove in general, to all orders).

- Q 1.2) By expanding the exponential, find an expression for  $exp(i\alpha A)$  where  $A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
- Q 1.3) If [A,B]=B, find an expression for  $\exp(i\alpha A)B\exp(-i\alpha A)$  (consider to all orders).

Q 2.1) Consider which of the following are groups:

- Integers under Addition
- Integers under Subtraction
- Integers under Multiplication
- Reals under Multiplication

Any violations of the requirements for a group mean that the set and operation do not form a group.

Q 2.2) Demonstrate that there is only one group combination table for 3 distinct objects, i.e. all groups for 3 objects have the same form (are isomorphic) to  $Z_3$ .

Do this by considering all the combinations for 3 distinct objects {e,a,b}.

Q 2.3) Show that the set of Lorentz Transformations:

$$g(\beta) \quad \begin{cases} x' = \gamma(x - \beta t) \\ t' = \gamma(t - \beta x) \\ \gamma = 1/\sqrt{1 - \beta^2} \end{cases} \quad |\beta| < 1$$

form an Abelian Lie group under the operation "follows".

*Hint*: start by combining two boosts:  $g(\beta_2)$   $g(\beta_1)$  and showing that these correspond to a third boost. Do this in Euclidean space. Easiest to employ matrix notation.

Q 2.4) Show that U(n) and SU(n) are groups.

- Q 3.1) Consider rotations in 3D about the x-, y- and z-axes SO(3). Identify generators appropriate to
  - a) Scalar wavefunctions  $\psi(x)$  we have done this in the Lectures; you can just write down the QM operators (do not write lots of blah, just write down operators)
  - b) Real vectors in 3D space consider infinitesimal rotation matrices; the generators will be 3×3 matrices (give the rotation matrices, consider small angles and identify generators)

In both cases, find the structure constants. (Don't work out every single possibility, but appeal to symmetry.)

- Q 3.2) For the generators  $\{L_x, L_y, L_z\}$  in question 3.1, part (b), find the <u>simultaneous</u> eigenvectors of  $L^2$  and  $L_z$  (i.e. the one set of vectors which are eigenvectors of both operators).
- Q 3.3) Find the adjoint matrices for the generators in question 3.1, part (b). In this case, it is obvious that they satisfy the Lie algebra.
- Q 3.4) Verify the form of  $R_y(\theta)$  for spin-1 given in Lecture 3.

Q 4.1) Using the Young Tableaux rules, write down the multiplicity for p particles of SU(n) in a totally symmetric state, namely a row of p boxes:



Now consider examples of how the corresponding states could be labelled by supplying quantum numbers {1,2,...,n}.

| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 1 | 1 | 1 | 2 |
|   |   |   |   |   |   |   |
| 1 | 1 | 1 | 1 | 1 | 2 | 2 |

Etc

By considering all the possible configurations, verify the multiplicity. Do this in general, not for a specific example.

Hint: This is so trivial, that it requires no algebra, but you have to spot the trick!

The trick is to consider the number of ways of listing p boxes with (n-1) transitions of state label.

Q 4.2) Using the Young Tableaux rules, verify that the multiplicity of a general multiplet in SU(2) is (a+1) and in SU(3) is  $\frac{1}{2}(a+1)(b+1)(a+b+2)$ .

Q 5.1) Considering only flavour, find the ratio of matrix elements for  $\pi^0 \to \gamma \gamma$  and  $\eta \to \gamma \gamma$ .

Do this for a general case of mixing angle  $\theta_p$ , and then choose  $\theta_p$  such that the  $\eta$  has no strange-quark content.

Is the –ve sign in the  $\pi^0$  wavefunction meaningful ?

#### How to proceed:

Label the scattering operator S and the meson state  $|M\rangle$ .

What you need is  $<\gamma\gamma\mid S\mid M>=\sum\limits_{q}<\gamma\gamma\mid S\mid q\overline{q}>< q\overline{q}\mid M>$ 



$$<\gamma\gamma|S|q\overline{q}>\sim Q_q^2$$

And

$$\mid \eta > = \cos \theta_p \mid \eta_8 > -\sin \theta_p \mid \eta_1 >$$
 
$$\mid \pi^0 > = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d}) \text{ etc}$$