Unit 2: Phenomenology of Neutrino Mixing

- Oscillation in matter - MSW effect
- Confirmation of solar MSW oscillation:Kamland
- Oscillation among 3 neurino species - PMNS matrix

Stefania Ricciardi,RAL v_{2}

HEP PostGraquate Néctures 2016-17
University of London

Solar v Problem 2002 A.D.

Michael Smy, UC Irvine
Again we need a energy dependent mechanism to explain all data Is v oscillation a good solution to all observed deficit?

Vacuum Oscillation

v Flux reduction: Ga~40\%, CI~65\%, water~50\%
One possible explanation is that neutrinos oscillate in the propagation between Sun and Earth (vacuum oscillation)
The oscillation length needs to be "just right" so that ${ }^{8} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}$ neutrinos are depleted more than pp neutrinos

Sun

Primaryneutino source

$$
p+p \rightarrow \mathrm{D}+e^{+}+v_{e}
$$

Survival Probability $=P\left(v_{e} \rightarrow v_{e}\right)=1-P\left(v_{e} \rightarrow v_{x}\right)$

$$
=1-\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta \mathrm{~m}^{2}\left(\mathrm{eV} \mathrm{~V}^{2}\right) \mathrm{L}(\mathrm{~m}) / \mathrm{E}(\mathrm{MeV})\right)
$$

$\Delta m^{2}\left(e^{2}\right) L(m) / E(M e V) \sim 1 \Rightarrow \Delta m^{2} \sim 10^{-11} \mathrm{eV}^{2}$
Oscillations on long-baselines are sensitive to tiny mass differences!
Showing the potential of this quantum interference phenomenon.

The Hamiltonian for vacuum

Vacuum oscillation can be rewritten in the form of a Shroedinger equation

$$
\begin{aligned}
& \left|v_{\mathrm{e}}(\mathrm{t})>=\cos \theta \mathrm{e}^{-\mathrm{E} \mathrm{E}_{1} t}{ }^{t}\right| v_{1}>+\sin \theta \mathrm{e}^{-\mathrm{E} \mathrm{E}_{2}}{ }^{\mathrm{t}} \mid v_{2}> \\
& \left|v_{x}(\mathrm{t})>=-\sin \theta e^{-\mathrm{E} \mathrm{E}_{1}}{ }^{\mathrm{t}}\right| v_{1}>+\cos \theta \mathrm{e}^{-\mathrm{E} E_{2} \mathrm{t}} \mid v_{2}> \\
& \text { Re-expressing }\left|v_{1}\right\rangle \text { and }\left|v_{2}\right\rangle \text { in terms of }\left|v_{\mathrm{e}}\right\rangle \text { and }\left|v_{\mathrm{x}}\right\rangle \\
& \left|v(\mathrm{t})>=\mathrm{c}_{\mathrm{e}}(\mathrm{t})\right| v_{\mathrm{e}}>+\mathrm{c}_{\mathrm{x}}(\mathrm{t}) \mid v_{\mathrm{x}}>
\end{aligned}
$$

Differentiating the coefficients, we obtain in matrix form

$$
\begin{aligned}
& \text { id/dt }\binom{c_{\mathrm{e}}(\mathrm{t})}{\mathrm{c}_{\mathrm{x}}(\mathrm{t})}= \pm \Delta\left(\begin{array}{cc}
-\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)\binom{\mathrm{c}_{\mathrm{e}}(\mathrm{t})}{\mathrm{c}_{\mathrm{x}}(\mathrm{t})} \\
& \mathrm{id} / \mathrm{dt}\binom{\boldsymbol{v}_{e}}{\boldsymbol{v}_{x}}=\mathcal{H}\binom{\boldsymbol{v}_{e}}{\boldsymbol{v}_{x}} \text { the matrix plays the role of a Hamiltonian. }
\end{aligned}
$$

Where $\Delta=\left|\Delta \mathrm{m}^{2}\right| / 4 \mathrm{E},+$ sign applies if $\mathrm{m} 2>\mathrm{m} 1,-$ sign if $\mathrm{m} 2<\mathrm{m} 1$
Note: adding multiple of identity matrix to H adds an overall phase which does not affect oscillating amplitudes

Matter Effects: MSW mechanism

MSW = Mikheyev - Smirnov - Wolfenstein

When neutrinos travel through matter (e.g. in the Sun, Earth, ..) their propagation is modified by scattering from particles they encounter along the way.
The interplay between flavor-nonchanging neutrino-matter interactions and neutrino-mixing can result in oscillation probability rather different than vacuum.

$$
\mathrm{H}=\mathrm{H}_{\text {Vacuum }}+\mathrm{H}_{\text {Matter }}
$$

Charged-current v_{e} elastic scattering singles out electron neutrinos

All neutrino flavors

Only electron neutrinos

$$
H= \pm \Delta\left(\begin{array}{cc}
-\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & \cos 2 \theta
\end{array}\right)+\sqrt{ } 2 G_{F} N_{e}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

$N_{e}=$ electron density, $G_{F}=$ Fermi constant, $V_{e}=\sqrt{ } 2 G_{F} N_{e}$ extra-potential "suffered" by v_{e} (note for anti-ve the sign of V is reversed, so matter effects on oscillation distinguish v from anti-v)

MSW: mixing in matter

$$
\mathrm{i} \frac{d}{d t}\binom{\nu_{\mathrm{e}}}{\nu_{\mathrm{x}}}=\mathrm{H}\binom{\nu_{\mathrm{e}}}{\nu_{\mathrm{x}}}
$$

Via a rotation we can diagonalize H and get the diagonal H_{m} describing the evolution of the states which propagate as plane waves in matter ("matter eigenstates" $v_{1 m}$ and $v_{2 m}$ different from the mass eigenstates v_{1} and v_{2})

$$
\begin{array}{cl}
\mathrm{R}_{\theta}=\left(\begin{array}{cc}
\cos \theta_{m} & -\sin \theta_{m} \\
\sin \theta_{m} & \cos \theta_{m}
\end{array}\right) & \binom{\nu_{1 m}}{\nu_{2 m}}=\mathrm{R}_{\theta}\binom{\nu_{e}}{\nu_{x}} \\
\mathrm{H}_{m}=R_{\theta} H R_{\theta}^{-1} & \mathrm{i} \frac{d}{d t}\binom{\nu_{1 m}}{\nu_{2 m}}=H_{m}\binom{\nu_{1 m}}{\nu_{2 m}}
\end{array}
$$

Best description in:
"Physics of Massive Neutrinos", F. Boehm and P.Vogel, Cambridge University Press. Another good ref.: D. Perkins "Particle Atrophysics, Oxford Master Series in PPAe

The newly defined mixing angle θ_{m} appearing in R_{θ} is related to the vacuum oscillation parameters and L_{e}

$$
\sin ^{2} 2 \theta_{m}=\frac{\sin ^{2} 2 \theta}{(\cos 2 \theta-A)^{2}+\sin ^{2} 2 \theta}
$$

$$
\begin{gathered}
\mathrm{A}=\frac{2 \sqrt{2} G_{\mathrm{F}} N_{e} E}{\Delta m^{2}}=\frac{L_{V}}{L_{e}} \\
\mathrm{~L}_{V}=\frac{4 \pi E}{\Delta m^{2}} \\
\mathrm{~L}_{e}=\frac{4 \pi}{2 \sqrt{2} G_{\mathrm{F}} N_{e}}
\end{gathered}
$$

$$
P\left(\nu_{\mathrm{e}} \rightarrow \nu_{\mathrm{x}}\right)=\sin ^{2} 2 \theta_{m} \sin ^{2} \frac{\pi L}{L_{m}}
$$

$$
\text { With } L_{M}=L_{V} \sin 2 \theta_{m} / \sin 2 \theta
$$

Resonance condition:

$$
L_{v}=L_{e} \cos 2 \theta
$$

Maximal mixing in matter Note that even if θ is very small at resonance electron-neutrinos could be transformed entirely in other active neutrinos via MSW

Matter effects in the Sun

A rigorous treatment needs to take properly Into account the exponential fall of N_{e}
$L_{e}=2 \pi /\left(\sqrt{ } 2 G_{F} N_{e}\right) \cong 1.710^{7} \mathrm{~m} /\left[\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right) Z / A\right] \approx($ Sun $) 3 \times 10^{5} \mathrm{~m}$
Solar radius $=3 \times 10^{8} \mathrm{~m}$
Resonance condition is for $L_{V}=L_{e} \cos 2 \theta$
Take $\theta=30^{\circ}$, resonance $\Rightarrow \Delta \mathrm{m}^{2}=10^{-4}-10^{-5} \mathrm{eV}^{2}$

Matter effects in the Earth

The Number density of electron in the Earth is much less than in the SUN $L_{e}=2 \pi /\left(\sqrt{ } 2 \mathrm{G}_{\mathrm{F}} \mathrm{N}_{\mathrm{e}}\right) \cong 1.710^{7} \mathrm{~m} /\left[\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right) \mathrm{Z} / \mathrm{A}\right] \approx\left(\right.$ rock $\left.\rho=3 \mathrm{~g} / \mathrm{cm}^{3} \mathrm{Z} / \mathrm{A}=1 / 2\right) 10^{4} \mathrm{Km}$ Resonant MSW (for "LOW" $\Delta \mathrm{m}^{2}, 10^{-6}-10^{-7}$) can produce a Day-Night asymmetry $A_{D N}=N-D / N+D \quad$ Sun may be brighter in the night!!

Until recently SuperK data were compatible with $\mathrm{A}_{\mathrm{DN}}=0$

2015 update:
$A_{D N}=-3.3 \pm 1.0 \pm 0.5 \%$ 3σ non-zero significance

Oscillation solutions

Fit to the event rates of all solar neutrino experiments (2002)

From Sun to Earth: Kamland

KamLAND confirms oscillations and selects LMA-MSW solution (12/2002)

-Oscillation of reactor anti- v_{e} proven

- Solar confirmed with man-made (anti)neutrinos

Allowed $\left(\Delta \mathrm{m}^{2}, \sin ^{2} \theta\right)$ values by solar and Kamland results today

Kamland clearly sees the L/E dip!

$$
\mathrm{P}\left(\bar{\nu}_{\mathrm{e}} \rightarrow \bar{\nu}_{\mathrm{e}}\right)=1-\sin ^{2} 2 \theta \sin ^{2}\left(1.27 \Delta \mathrm{~m}^{2} \frac{\mathrm{~L}_{0}}{\mathrm{E}}\right) \quad\left\langle\mathrm{L}_{0}\right\rangle=180 \mathrm{~km}
$$

3-flavour v oscillations

In general $3 v$ weak-eigenstates are a superposition of 3 mass-eigenstates .
Actually we need 3 -mass eigenstates to explain 2 different $\Delta \mathrm{m}^{2}$:

$$
\begin{aligned}
& \left|m_{2}{ }^{2}-\mathrm{m}_{1}{ }^{2}\right|=\Delta \mathrm{m}_{\text {sol }} \sim 810^{-5} \mathrm{eV}^{2} \\
& \left|\mathrm{~m}_{3}{ }^{2}-\mathrm{m}_{2}{ }^{2}\right|=\Delta \mathrm{m}_{\mathrm{atm}}^{2} \sim 210^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

Neutrino mixing matrix or PMNS matrix Relates mass and weak eigenstates (analogue to CKM matrix in the quark sector)

$$
\left(\begin{array}{l}
v_{\mathbf{e}} \\
\mathbf{v}_{\mu} \\
v_{\tau}
\end{array}\right)=\left(\begin{array}{lll}
\mathrm{U}_{\mathrm{el}} & \mathrm{U}_{\mathrm{e}} & \mathrm{U}_{\mathrm{e}} \\
\mathrm{U}_{\mu 1} & \mathrm{U}_{\mu 2} & \mathrm{U}_{\mu 3} \\
\mathrm{U}_{\tau 1} & \mathrm{U}_{\tau 2} & \mathrm{U}_{\tau 3}
\end{array}\right)\left(\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
v_{3}
\end{array}\right)
$$

$U_{\text {PMNS }}$ unitarity (as CKM again)

\Rightarrow can be parameterized with 4 parameters: 3 angles, 1 complex phase)

PMNS matrix

$$
\begin{aligned}
& U_{P M N S}=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \xrightarrow[\begin{array}{l}
\text { Standard parameterization of } \\
\text { Pontecorvo-Maki-Nakagawa-Sakata matrix }
\end{array}]{=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right) \begin{array}{l}
\mathrm{s}_{13}=\sin \theta_{13} \\
\mathrm{c}_{13}=\cos \theta_{13}
\end{array}} \\
& \text { Atmospheric }
\end{aligned}
$$

Solar \& atmospheric v oscillations easily accommodated within 3 generations.
Because of small $\sin ^{2} 2 \theta_{13}$, solar \& atmospheric v oscillations almost decouple
$\boldsymbol{\theta}_{\mathbf{2 3}}($ atmospheric $) \cong \mathbf{4 5}^{\mathbf{a}}$
$\boldsymbol{\theta}_{\mathbf{1 2}}($ solar $) \cong \mathbf{3 3}^{\mathbf{0}}$
$\boldsymbol{\theta}_{\mathbf{1 3}}($ reactor $) \cong \mathbf{8 . 5}^{\mathbf{0}}$
$\boldsymbol{\delta} \boldsymbol{?}$$\quad U_{P M N S} \sim\left(\begin{array}{ccc}0.8 & 0.5 & 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7\end{array}\right)$

Mass spectrum and mixing

Normal mass hierarchy

Inverted mass hierarchy

We do not know yet:

- Absolute mass scale
\square Type of the mass hierarchy: Normal, Inverted

Why does 2-flavour mixing work?

$$
\begin{gathered}
U_{P M N S}=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right) \\
\left.v_{\mu}, t\right\rangle= \\
\left.|1\rangle U_{\mu 1} e^{-i m_{1}^{2} t / 2 p}+2\right\rangle U_{\mu 2} e^{-i m_{2}^{2} t / 2 p}+|3\rangle U_{\mu 3} e^{-i m_{3}^{2} t / 2 p} \\
\left\langle v_{\tau}\right|=\langle 1| U_{\tau 1}^{*}+\langle 2| U_{\tau 2}^{*}+\langle 3| U_{\tau 3}^{*} \\
\left\langle v_{\tau} \mid v_{\mu}(t)\right\rangle=U_{\tau 1}^{*} U_{\mu 1} e^{-i m_{1}^{2} t / 2 p} \\
\\
+U_{\tau 2}^{*} U_{\mu 2} e^{-i m_{2}^{2} t / 2 p}+U_{\tau 3}^{*} U_{\mu 3} e^{-i m_{3}^{2} t / 2 p}
\end{gathered}
$$

Why does 2-flavor mixing work?

If difference $\left|\Delta \mathrm{m}_{12}\right|^{2} \ll\left|\Delta \mathrm{~m}_{23}\right|^{2}$, we retrieve the 2-flavor formula: "one mass scale dominance". This situation corresponds to an experiment whose L/E is such that the experiment can see only one mass splitting and is unable to resolve the 2 mass eigenstates in the other mass splitting, which are then seen as one. Like for atmospheric neutrinos.

$$
\begin{aligned}
& \left\langle v_{\tau} \mid v_{\mu}(t)\right\rangle=U_{\tau 1}^{*} U_{\mu 1} e^{-i m_{1}^{2} t / 2 p} \\
& +U_{\tau 2}^{*} U_{\mu 2} e^{-i m_{2}^{2} t / 2 p}+U_{\tau 3}^{*} U_{\mu 3} e^{-i m_{3}^{2} t / 2 p} \\
& \cong\left(U_{\tau 1}^{*} U_{\mu 1}+U_{\tau 2}^{*} U_{\mu 2}\right) e^{-i m_{2}^{2} t / 2 p}+U_{\tau 3}^{*} U_{\mu 3} e^{-i m_{3}^{2} t / 2 p} \\
& =-U_{\tau 3}^{*} U_{\mu 3} e^{-i m_{2}^{2} t / 2 p}+U_{\tau 3}^{*} U_{\mu 3} e^{-i m_{3}^{2} t / 2 p} \\
& \cong e^{i \delta} \sin \theta_{23} \cos \theta_{23}\left(-e^{-i m_{2}^{2} t / 2 p}+e^{-i m_{3}^{2} t / 2 p}\right)
\end{aligned}
$$

It works also if one U coefficient is much smaller than the others.
Since $U_{e 3} \sim 0$, electron neutrinos couple to a good approximation only to 2 mass eigenstates, v_{1} and v_{2}. Solar neutrinos case.

When is 3-flavor mixing important?

3-flavor mixing required in the interpretation of results by experiments sensitive to small values of θ_{13} (if $\theta_{13} \neq 0$!)

$$
\begin{aligned}
P\left(v_{\alpha} \rightarrow\right. & \left.v_{\beta}\right)=\delta_{\alpha \beta+} \\
& -4 \sum_{i>j} \operatorname{Real}\left(U^{*}{ }_{\alpha i} U^{*}{ }_{\beta i} U_{\alpha j} U_{\beta j}\right) \sin ^{2}\left[\left(\Delta m_{i j}^{2} L\right) /(4 E)\right] \\
& +2 \sum_{i>j} \operatorname{Im}\left(U^{*}{ }_{\alpha i} U^{*}{ }_{\beta i} U_{\alpha j} U_{\beta j}\right) \sin ^{2}\left[\left(\Delta m_{i j}^{2} L\right) /(2 E)\right]
\end{aligned}
$$

We can then determine other sub-leading effects such as CP violation

Anti-neutrinos: the last term flips sign because $U \rightarrow U^{*}$
$\Rightarrow \mathrm{P}\left(v_{\alpha} \rightarrow v_{\beta}\right) \neq \mathrm{P}\left(\overline{v_{\alpha}} \rightarrow \overline{v_{\beta}}\right)$
CP violation if 1 complex phase different from zero

$\mathrm{P}\left(v_{\mu} \rightarrow v_{\mathrm{e}}\right)$ on one slide (3 generations)

$$
\begin{aligned}
& \mathrm{P}\left(v_{\mu} \rightarrow v_{\mathrm{e}}\right)=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\mathrm{P}_{4}+\text { corrections } \\
& P_{1}=\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}\left(\frac{\Delta_{13}}{B_{ \pm}}\right)^{2} \sin ^{2} \frac{B_{ \pm} L}{2} \\
& P_{2}=\cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12}\left(\frac{\Delta_{12}}{A}\right)^{2} \sin ^{2} \frac{A L}{2} \\
& P_{3}=J \cos \delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{ \pm}}\right) \cos \frac{\Delta_{13} L}{2} \sin \frac{A L}{2} \sin \frac{B_{ \pm} L}{2} \\
& P_{4}=\mp J \sin \delta\left(\frac{\Delta_{12}}{A}\right)\left(\frac{\Delta_{13}}{B_{ \pm}}\right) \sin \frac{\Delta_{13} L}{2} \sin \frac{A L}{2} \sin \frac{B_{ \pm} L}{2} \\
& \Delta_{i j}=\frac{\Delta m_{i j}^{2}}{2 E_{\nu}} \\
& A=\sqrt{2} G_{F} n_{e}
\end{aligned}
$$

Electron neutrino appearance in a muon-neutrino beam:

- Access to θ_{13}
- Access to $\delta_{\text {CP }}$ which enhances or suppress the conversion probability
- Matter effects also enhance or suppress probability
- Matter effects depend on the mass hierarchy (sign of $\Delta \mathrm{m}^{2}{ }_{13}$)
- In addition the probability probes the octant of θ_{23}

