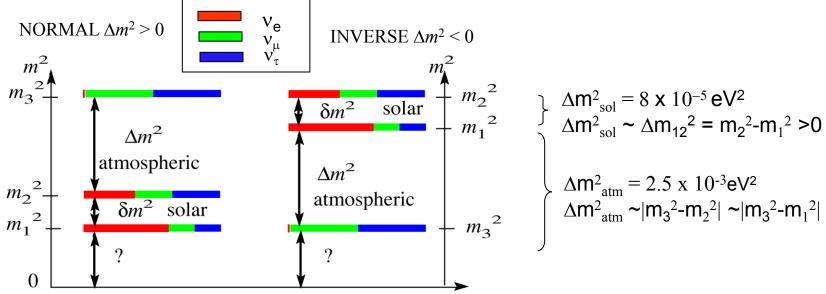
Unit 6: The Absolute Neutrino Mass

- Experimental Bounds
- Direct Measurements
- Dirac and Majorana Neutrinos
- Double Beta Decay Experiments

Stefania Ricciardi, RAL HEP PostGraduate Lectures 2016-17 University of London


What we have learnt from mixing: neutrino mass lower bound

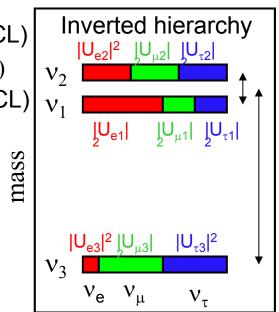
• Weak eigenstates v_e , v_μ , v_τ superposition of mass eigenstates v_1 , v_2 , v_3 numbered in increasing order of v_e content, given by $|U_{ei}|^2$ (shown in red in figure)

 $v_1 \sim 70\% v_e, v_2 \sim 30\% v_e, v_3 \sim 2.5\% v_e$

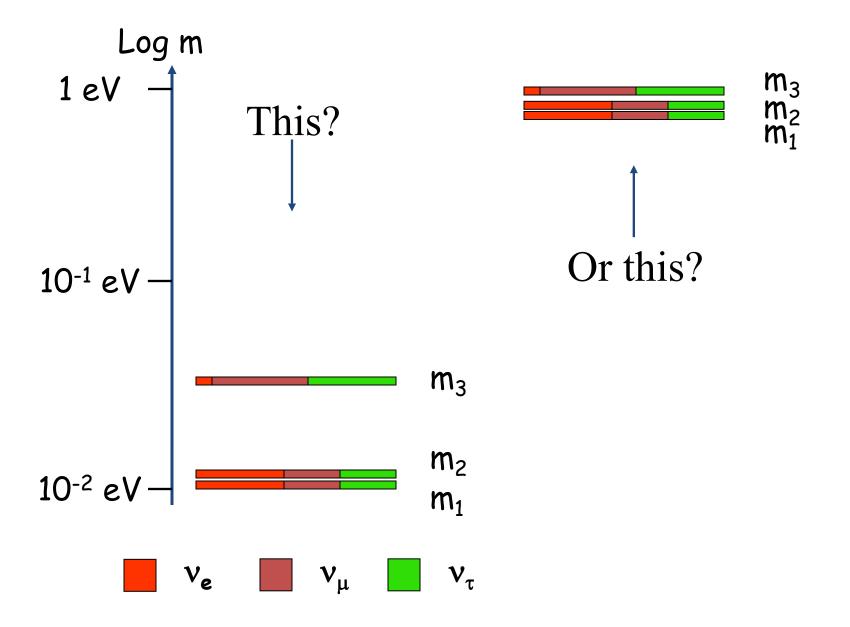
What is the absolute value of neutrino masses?

Neutrino oscillation experiments can measure only mass differences. However note that $\Delta m_{atm}^2 \sim 2.5 \ 10^{-3} \ eV^2$ \Rightarrow at least one neutrino with mass > $\sqrt{\Delta m_{23}^2} \sim 50 \ meV$ Is it m₂ or m₃? Depends on the mass hierarchy!

Understanding the mass "hierarchy"


Direct upper bounds on neutrino mass:

 m_{ve} < 2 eV</th>from β-decay (95%CL) $m_{v\mu}$ < 0.19 MeV</td>from $\pi \rightarrow \mu v$ (90% CL) $m_{v\tau}$ < 18.2 MeV</td>from τ decays (95%CL)


We know now that flavor eigenstates do not coincide with mass eigenstates, so these are bounds on the "effective" mass:

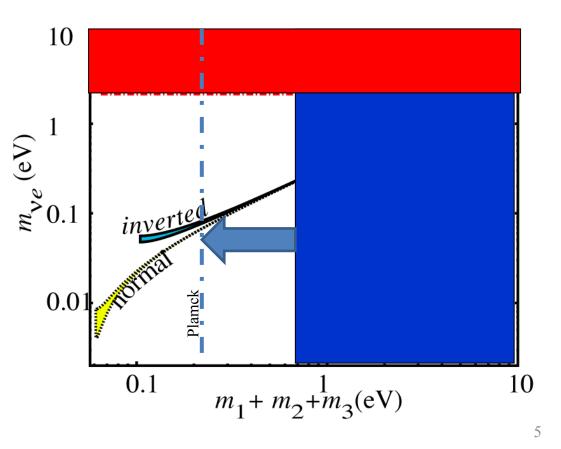
 $m_{eff}^{2}(v_{\alpha}) = \sum_{i=1,3} |U_{\alpha i}|^{2} m^{2}(v_{i})$

If the mass hierarchy is "inverted" $\nu_e~$ is effectively heavier than ν_μ and ν_τ !

Even more significant is the absolute scale.

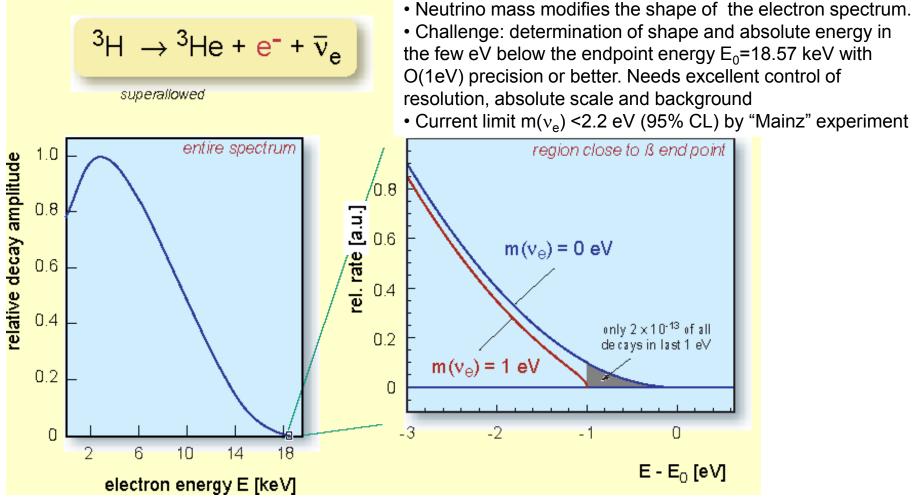
Cosmological upper bound on mass

Cosmology Data (Cosmic Microwave Background, Planck) $\Sigma m_i < 0.23 \text{ eV} @ 95\% \text{ CL}$ (the bound applies to "light" neutrinos only)

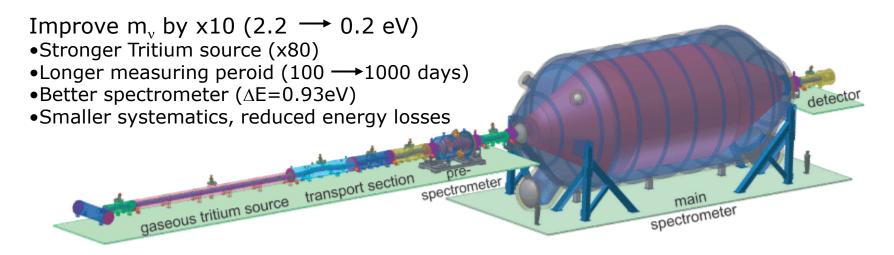

Massive neutrinos affect both the evolution of Universe and the growth of structures on small scales

In general: cosmological constraint much tighter than direct constraints but rely on theoretical models and important assumptions.

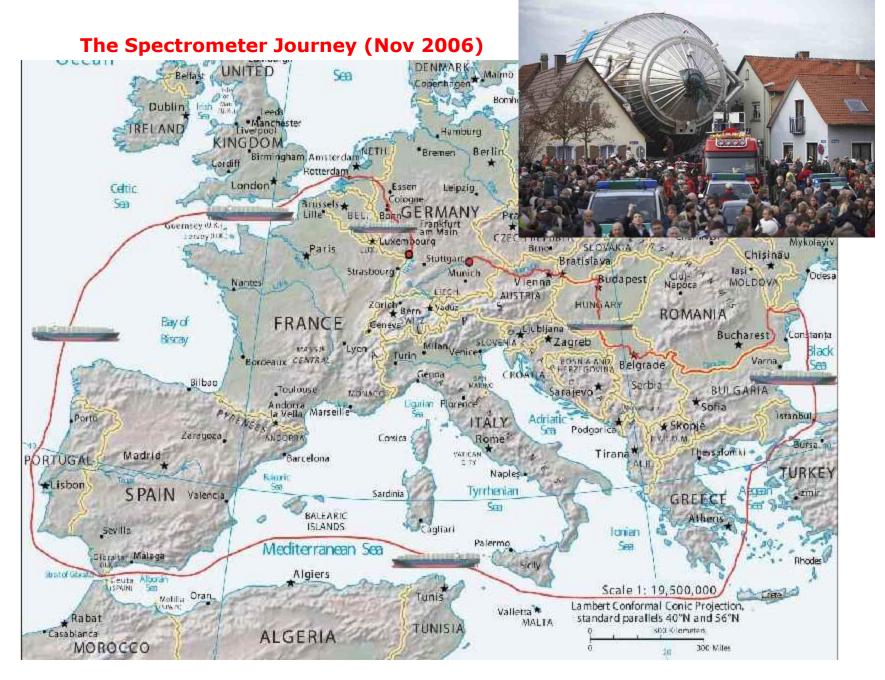
Systematic uncertainties hard to quantify.


The upper bound would be somewhat worse if you also allowed, for example, the curvature of the universe to vary, and/or the dark energy equation of state, and/or including e.g. an axion component. Perhaps with current data that error would go up by around a factor 2. [Jo Dunkley, private communication]

For a recent discussion see PhysRevD.90.063516


Direct Mass Measurement in β decay

tritium ß-decay and the neutrino rest mass


The KATRIN Experiment

(KArlsruhe TRItium Neutrino experiment, location: Forschungszentrum Karlsruhe)

- Katrin aim to improve upper bound by an order of magnitude (0.2 eV)
- Based on special type of spectrometer: MAC-E-Filters (Magnetic Adiabatic Collimation combined with an Electrostatic Filter)
- A pre-spectrometer is required to remove all electrons but a fraction of 10⁻⁷ at the highest energies (to minimize the background due to trapped electrons)
- The detector at the end counts electrons. High energy and position resolution to suppress the background. Semiconductor technology employed.

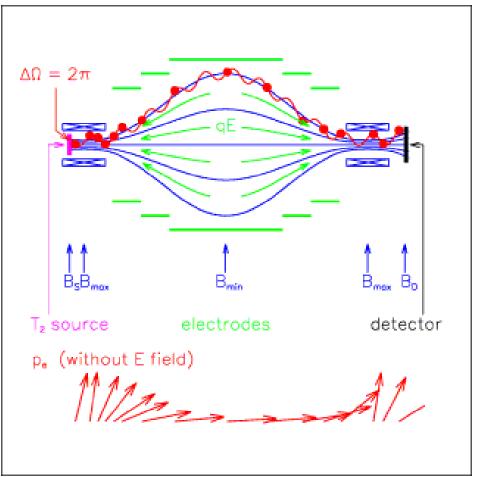
First tritium data in 2017

MAC-E Filter

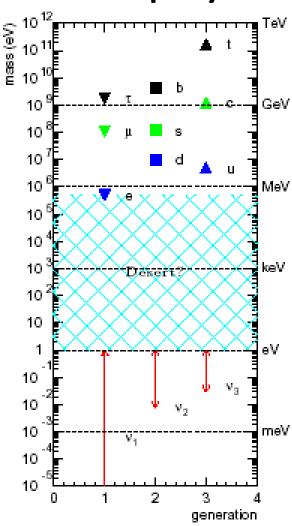
• The spectrometer acts as an integrating high-energy pass filter with a resolution $\Delta E/E = B_{min}/B_{max}$

Principle:

Two superconducting solenoids


• Electrons guided magnetically on a cyclotron motion around the magnetic field lines into the spectrometer

• In the center the magnetic field drops. Cyclotron motion transformed adiabatically into longitudinal motion.


• Electrons isotropically emitted at the source transformed in a broad beam of electrons flying almost parallel to field lines and run against an electrostatic potential formed by a system of cylindrical electrods

• Only electrons with enough energy to pass the electrostatic barrier are reaccelerated and collimated onto a detector.

• Varying the electrostatic retarding potential allows to measure the beta spectrum in an integrating mode.

Neutrino mass: physics beyond the SM

- The Big Question: Why are neutrinos so much lighter than other fermions?
- Majorana neutrinos and See-Saw Mechanism introduced in extensions of the Standard Model provide an answer

Dirac and Majorana neutrino

Is the neutrino its own antiparticle? If so, neutrinos are Majorana particles (from Ettore Majorana who first introduced the idea in 1937)

- Charged particles cannot coincide with anti-particle (ex electron different from positron). Different electric charge (which is conserved)
- Neutron is different from anti-neutron (different baryonic number)
- π^0 is a boson and is its own antiparticle!
- Lesson: particle/anti particle distinction corresponds to a symmetry of the theory or, in other words, some conserved quantum number
- If neutrinos (L = -1) are Dirac particles they are distinct from their anti-particle (L = 1) and leptonic number is conserved

If neutrinos are Majorana particles

 $v = v^{C}$

and leptonic number is violated.

In experimental terms: if, for a given momentum and helicity, neutrinos and antineutrinos have identical interactions with matter, neutrinos are Majorana particles.

Why we do not know if $v = \overline{v}$

- Available neutrinos are always polarised: we observe only left-handed neutrinos and right-handed anti-neutrinos, as a result we are not able to compare the interaction with matter of neutrinos and antineutrinos of the same helicity. Is the different interaction due to different polarisation or real distinction between neutrinos and anti-neutrinos?
- Ex: $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ produces a left-handed neutral particle

 $\nu_{\mu} N \rightarrow \mu^{-} X$ Observed

 $\nu_{\mu} N \rightarrow \mu^{+} X$ NOT Observed

 $\pi^- \rightarrow \mu^- \overline{\nu}_{\mu}$ produces a right-handed neutral particle

 $\overline{\nu}_{\mu} N \rightarrow \mu^{-} X$ NOT Observed

 $\overline{\nu}_{\mu} N \rightarrow \mu^{+} X$ Observed

- is v_{μ} different from $\overline{v_{\mu}}$ or is the different charge of the lepton produced in the two cases due to the different polarization?
- To distinguish the two cases we should reverse the helicity (how? For example boost to a frame which moves faster than neutrino), which is not possible if neutrino is massless ⇒ For massless neutrinos the distinction between Majorana and Dirac disappears

Dirac neutrino mass

General mass term in the Lagrangian for field $\boldsymbol{\psi}$

 $m\psi\overline{\psi}$ where $\overline{\psi} = \psi^+\gamma^0$

given $\psi_{L,R} = \frac{1}{2} (1 \mp \gamma^5) \psi$ $\overline{\psi}_{L,R} = \frac{1}{2} \overline{\psi} (1 \pm \gamma^5)$

 $\overline{\psi}\psi = \overline{\psi}_{L}\psi_{R} + \overline{\psi}_{R}\psi_{L}$

 \Rightarrow In order to introduce a DIRAC mass term we need right-handed neutrinos and left-handed antineutrinos (which in the Standard Model are absent). So if neutrinos are massive DIRAC particles there must be 4 different states (2 X HELICITY)

Within the simplest extension of the SM (no changes in the Higgs sector) neutrino mass would be given by $m_v = g_v v / \sqrt{2}$

in analogy with electron mass, $m_e = g_e v / \sqrt{2}$ where $\langle h^0 \rangle = v / \sqrt{2}$

Small mass $g_e > 5 \times 10^5 g_v$

Why would the relative couplings be so different?

Majorana mass terms

 If v and v are different helicity states of the same particle the most generic mass term in the Lagrangian can contain lepton number violating combinations

The off-diagonal elements *m* give rise to lepton-number conserving Dirac mass terms and the M_{L,R} terms on the diagonal to lepton-number violating Majorana mass terms

In general for Majorana neutrino we will have both Dirac and Majorana mass terms in the Lagrangian

See-saw mechanism

• To enforce the gauge symmetry of the SM, it is required that $M_L=0$ (hep-ph/0310238). This is called Type I see-saw, where also M_R is very large and m \approx mass charge lepton

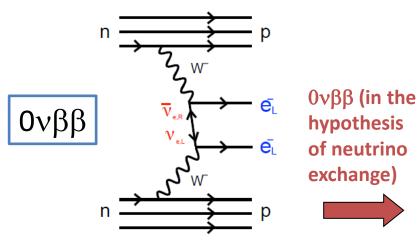
$$\begin{bmatrix} 0 & m_{\nu} \\ m_{\nu} & M \end{bmatrix}$$

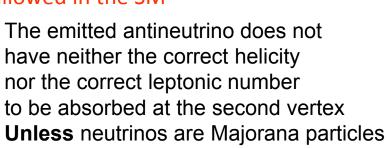
The diagonalization of this matrix gives rise to the mass eigenstates (2 for each neutrino flavour) : $m_{light} \approx m_v^2 / M$ mostly LH $m_{heavy} \approx M$ mostly RH and not observed because too massive

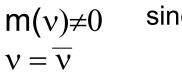
Double β Decay

• Double β decay

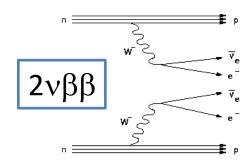
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$$

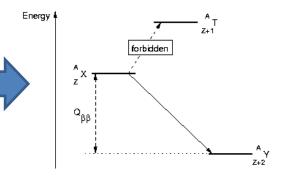

Allowed in the SM


observed for nuclei which do not undergo β decay (energetically forbidden)

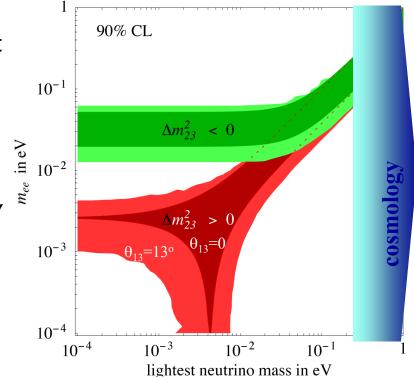

• Neutrino-less double β decay

 $(\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}{+}2) + 2\mathrm{e}^{\scriptscriptstyle -}$

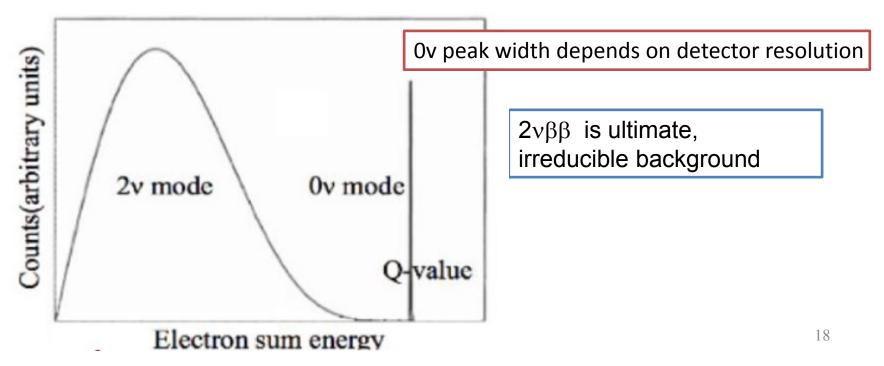

Hypothetical L violating process not allowed in the SM



since helicity has to flip

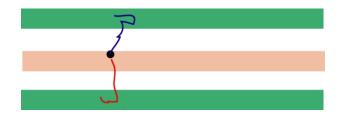


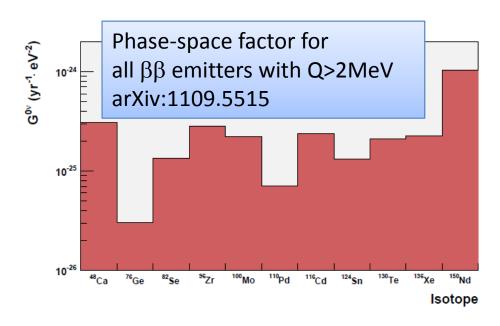
Decay rate and mass


Decay rates are given by: $1/\tau = G(Q_{\beta\beta,Z}) |M^{0\nu}|^2 < m_{\nu}^2$

- $G(Q_{\beta\beta,z})$ is the phase space integral
- |M^{0v}| is the nuclear matrix element (known to factor 2 or 3, source of large uncertainties)
- $\langle m_v \rangle^2 = |\Sigma U_{ei}^2 m_i|^2$ Note that the effective mass measured in 0v decay (noted as m_{ee} in the y axis of the plot) is different from the effective mass measured in β decay $\langle m_v \rangle^2 = \Sigma |U_{ei}|^2 m_i^2$

Energy spectrum for 2β decays


- Sum of 2 electron energy allow to separate $0\nu\beta\beta$ and $2\nu\beta\beta$
- Excellent energy resolution required (few keV at 1-2 MeV)
- Very Low background:
 - Underground lab
 - High radio-purity of all materials
 - background rejection in the signal reconstruction (shape analysis)
- Big source (O(100 Kg) now ; 1t in the future)


Double- β decay experiments

- 2 experimental approaches:
- Source = detector
 Bolometry and calorimetry
 - ✓ good energy resolution
 - ✓ large detector mass

- Source ≠ detector
 - Tracking
 - ✓ good topological reconstruction
 ✓ different isotopes as source allow to circumvent theoretical errors in nuclear matrix calculations

Choice of $\beta\beta$ isotope

Phase-space $G^{0\nu} \propto Q^5$

⇒Considered only isotopes with Q>2MeV: ⇒Only 11

Other important considerations:

- background control (better above ~3MeV)
- $\beta\beta2\nu$ decay rate (preferred slow decaying isotopes, intrinsic bkg)
- •Well-understood nuclear physics

Germanium Experiments

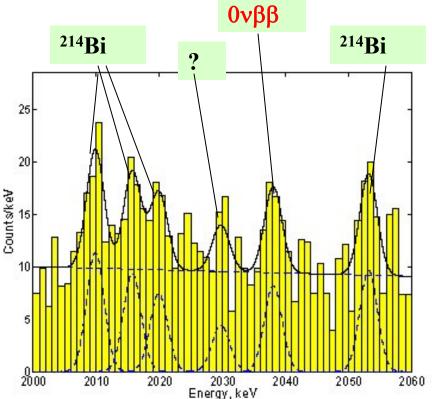
- Why Germanium?
 - $~^{76}\text{Ge}~2\nu2\beta$ decay
 - Excellent energy resolution of Ge semiconductor diodes
 - well-proven technology
- Longest running exp: Heidelberg-Moscow 13 years at Gran Sasso (1990-2003) used about 10 Kg (86% enriched) ⁷⁶Ge diodes

eidelberg oscow Collaboration

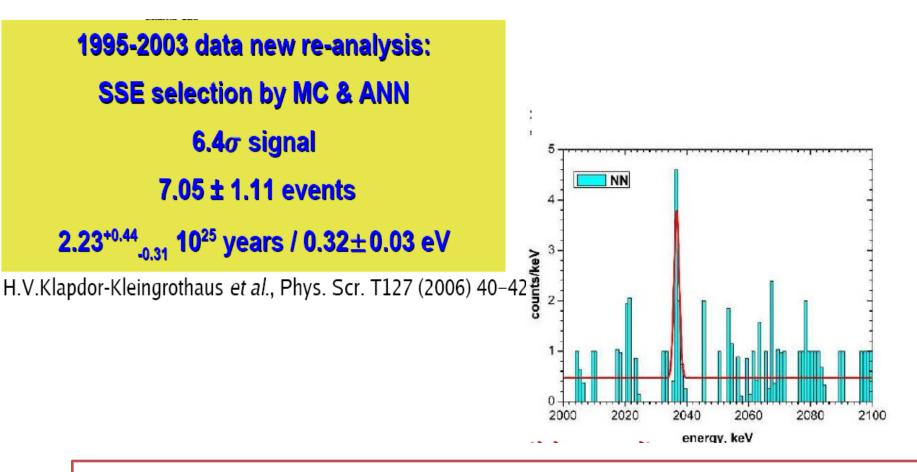
No $0v2\beta$ signal observed T_{1/2} > 1.9 x 10^{25} yr (90% CL) $\Rightarrow m_v < 0.4 \text{ eV}$

H.V. Klapdor-Kleingrothaus et al, Europ. Phys. J. A 12, 147 (2001)

A double- β decay evidence?

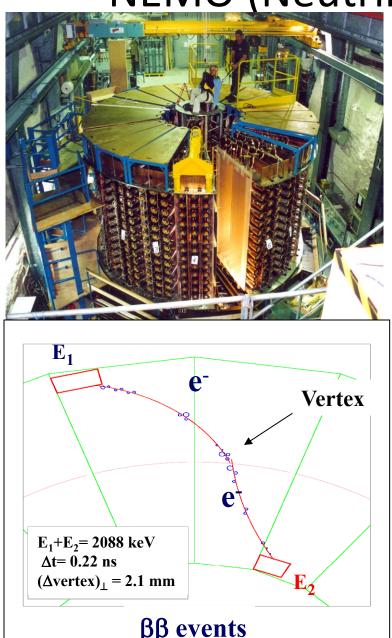

Analysis of the ⁷⁶Ge data by a sub-group of the HM Collaboration (Klapdor-Kleingrothaus et al, PLB 586,198,2004)

 4σ effect claimed


$$T^{0v}_{1/2}$$
 = (0.69 – 4.18) 10²⁵ y
v > = (0.17 – 0.63) eV

Critics:

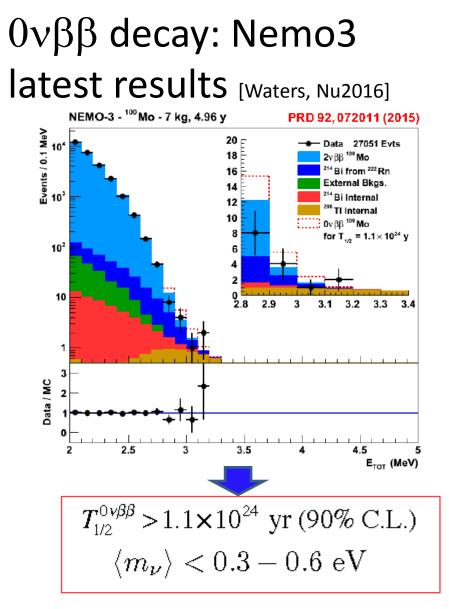
- low statistical significance of signal
- Unknown extra-peak at 2030 keV with similar significance
- Larger energy window checks?



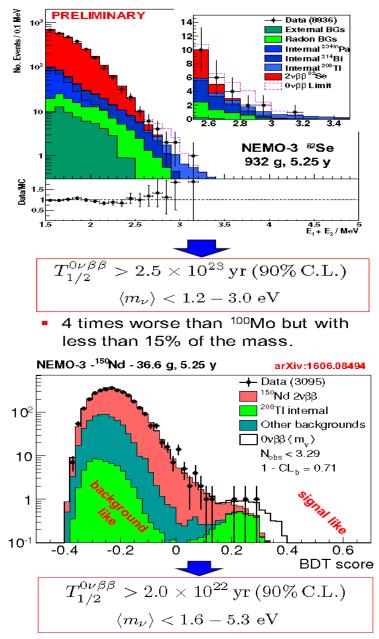
Re-analysis of same data (2006)

Not confirmed and essentially ruled out by current more sensitive experiments

NEMO (Neutrino Ettore Majorana


io Ettore Majorana Observatory) 2003-2011

In Frejus @ 4800 meters water equivalent


Magnetic + tracking detector + calorimeter

- tracking for background rejection (drift cells)
- calorimetry for energy resolution (plastic scintillators+PMT)
- multiple isotopes for systematics (¹⁰⁰Mo, ⁸²Se, ¹³⁰Te, ¹¹⁶Cd,..)
 10 Kg distributed in thin source foils

Tag and measures all components of backgrounds: α , γ , e⁻, e⁺

 Close to the best limits from other experiments, with only 7kg of isotope.

 Expected (observed) half-life limit is 11% (34%) better than using E_{TOT} alone.

Compilation of current results


Nucleus	Experiment	Exposure (kg · year)	T ^{0v} 1/2 limit (yr) 90%CL	<m<sub>ββ> (eV)</m<sub>	
⁴⁸ Ca	ELEGANTVI	0.025	>5.8×10 ²²	<3.5-22	
⁷⁶ Ge	Heidelberg-Moscow	35.5	> .9× 0 ²⁵	<0.2-0.32*	
	GERDA	34.36	> 5.2x10 ²⁵	< 0.16-0.26	
⁸² Se	NEMO-3	4.2	>3.2×10 ²³	<0.8-1.4	
⁹⁶ Zr	NEMO-3	0.031	>9.2×10 ²¹	<9.3-13.7	
¹⁰⁰ Mo	NEMO-3	31.2	> .0× 0 ²⁴	<0.4-0.7	
116Cq	Solotvina	0.14	> .7× 0 ²³	<1.2-2.2	
¹²⁸ Te	Geochemical	—	>7.7×10 ²⁴	<0.7-1.2	
¹³⁰ Te	CUORICINO	19.75	>2.8×10 ²⁴	<0.44-0.81	
¹³⁶ Xe	KamLAND-Zen	150	> 11x10 ²⁵	< 0.06-0.16	
	EXO-200	100	> 1.1x10 ²⁵	< 0.19-0.45	
¹⁵⁰ Nd	NEMO-3	0.093	>1.8×10 ²²	<4.0-6.3	
*part of the group claims a finite value					

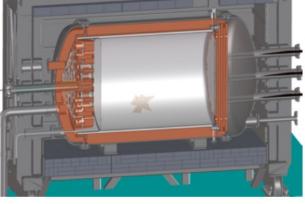
"Klapdor's claim" strongly disfavoured

ββ-decay New Experiments (a selection)

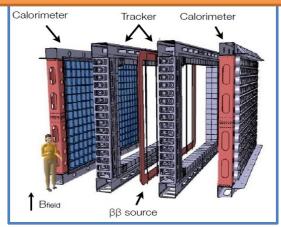
Calorimeters

GERDA (GE-76)

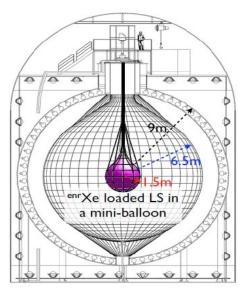
CUORE (TeO2)


KamLAND-ZEN (Xe-136+LS)

SNO+ (Te + LS)

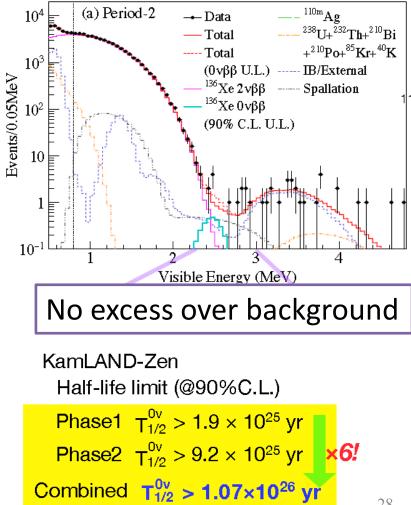


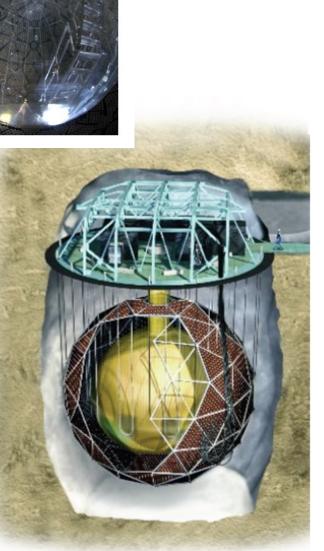
EXO (Xe-136)LXe


NEXT (Xe-136)HPXe Also PandaX

Tracking Calorimeter

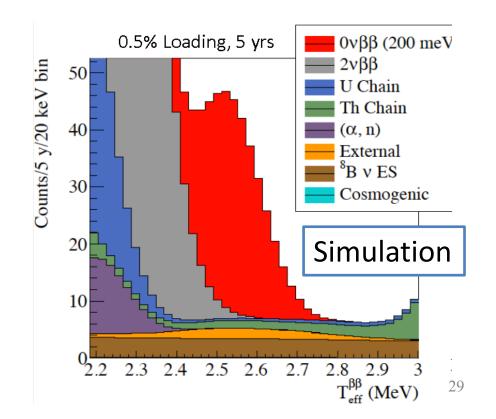
SuperNEMO (⁸²Se)


Kamland-ZEN


~400 Kg ¹³⁶Xe loaded liquid scintillator in a mini-balloc inside ultra-low background KAMLAND detector

Kamland2-Zen with 1000kg enriched Xe in preparation Better energy resolution and background rejection Aiming at full coverage of IH

Phase-2 data (Neutrino 2016)

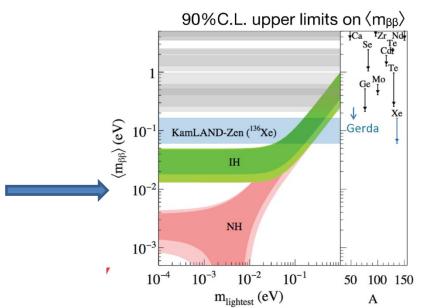


SNO+

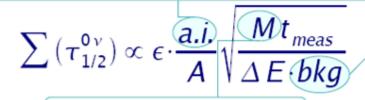
Plan to fill SNO vessel with 780t of liquid scintillator loaded with Tellurium

- 34% natural abundance of ¹³⁰Te
 - Can load high amount of natural isotope (~4tons)
 - Relatively inexpensive compared to enriched isotopes
- Low $2\nu\beta\beta$ decay (100 times smaller than ¹⁵⁰Nd)

From NEMO to SuperNemo



	NEMO-3	SuperNEMO
Mass	7 kg	100 kg
lsotopes	^{100}Mo	⁸² Se
	7 isotopes	150 Nd, 48 Ca
Foil density	60 mg/cm^2	40 mg/cm^2
Energy resolution ($\sigma \mid FWHM$)		
@ 1 MeV	6.3 15 %	3.0 7 %
@ 3 MeV	3.4 8 %	1.7 4 %
Radon in tracker	_	_
$\mathcal{A}(^{222}Rn)$	\sim 5.0 mBq/m 3	\sim 0.15 mBq/m 3
Sources contaminations		
$\mathcal{A}(^{208}_{214}TI)$	$\sim 100~\mu{ m Bq/kg}$	$< 2~\mu{ m Bq/kg}$
$\mathcal{A}(^{214}Bi)$	60 - 300 $\mu Bq/kg$	$< 10~\mu{ m Bq/kg}$
Detector		
tracking cells	6180	20×2034
calo blocks	1940	20×712
Sensitivity (90 % CL)	24	20
$\mathcal{T}_{1/2}^{0 u}$	$> 1.1 \; 10^{24}$ y	$> 1 \; 10^{26}$ y
$ m_{etaeta} $	< 0.3 - 0.8 eV	< 40 - 100 meV


SuperNEMO demonstrator module with 7 kg of ⁸²Se (53 mg/cm²) is under construction Near completion

Future sensitivity of $0\nu 2\beta$ experiments

- AIM: 10-20 meV sensitivity
 - DISCOVERY if mass HIERARCHY is inverted
- What is it required?
 - Different experiments with different isotopes
 - Reduce nuclear matrix elements uncertainties
 - Improve all parameters determining sensitivity

[increase isotopic abundance by enrichment] reduce background by:

material selection and proper handling choosing proper technique using signatures improving energy resolution

31

increase experimental mass

10 meV are very challenging:

factor 10 in neutrino mass => factor 10^4 in M x t/(Bkg x Δ E)! Need new ideas to reach < 10 meV

Summary

Single beta decay

$$m_{v} = \sqrt{\sum |U_{ei}|^2 m_i^2}$$

KATRIN $m_v < 2.3 \text{ eV} \rightarrow m_v < 0.2 \text{ eV}$

Double beta decay

$$|\langle m_{v}\rangle| = |\sum U_{ei}^{2} m_{i}|$$

Unique tool to study neutrino nature (DIRAC/Majorana)

Experiments have reached a sensitivity at the top of the inverted hierarchy region

Future generation aims to improve the limit by factor 10 and probe the inverted mass-hierarchy region

New ideas needed to go below 10 meV and probe normal hierarchy region